Planar Graphs of Odd-girth at Least 9 Are Homomorphic to Petersen Graph
نویسندگان
چکیده
Let G be a graph and let c : V (G) → ({1,...,5} 2 ) be an assignment of 2-element subsets of the set {1, . . . , 5} to the vertices of G such that for every edge vw, the sets c(v) and c(w) are disjoint. We call such an assignment a (5, 2)-coloring. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph. The odd-girth of a graph G is the length of the shortest odd cycle in G (∞ if G is bipartite). We prove that every planar graph of odd-girth at least 9 is (5, 2)colorable, and thus it is homomorphic to the Petersen graph. Also, this implies that such graphs have fractional chromatic number at most 5 2 . As a special case, this result holds for planar graphs of girth at least 8.
منابع مشابه
Planar Graphs of Odd-Girth at Least 9 are Homomorphic to the Petersen Graph
Let G be a graph and let c : V (G) → ({1,...,5} 2 ) be an assignment of 2-element subsets of the set {1, . . . , 5} to the vertices of G such that for every edge vw, the sets c(v) and c(w) are disjoint. We call such an assignment a (5, 2)-coloring. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph. The odd-girth of a graph G is the length of the shortest odd ...
متن کاملn-Tuple Coloring of Planar Graphs with Large Odd Girth
The main result of the papzer is that any planar graph with odd girth at least 10k À 7 has a homomorphism to the Kneser graph G 2k1 k , i.e. each vertex can be colored with k colors from the set f1; 2;. .. ; 2k 1g so that adjacent vertices have no colors in common. Thus, for example, if the odd girth of a planar graph is at least 13, then the graph has a homomorphism to G 5 2 , also known as...
متن کاملMapping planar graphs into the Coxeter graph
We conjecture that every planar graph of odd-girth at least 11 admits a homomorphism to the Coxeter graph. Supporting this conjecture, we prove that every planar graph of odd-girth at least 17 admits a homomorphism to the Coxeter graph.
متن کاملA new bound for parsimonious edge-colouring of graphs with maximum degree three
In a graph G of maximum degree 3, let γ(G) denote the largest fraction of edges that can be 3 edge-coloured. Rizzi [9] showed that γ(G) ≥ 1 − 2 3godd(G) where godd(G) is the odd girth of G, when G is triangle-free. In [3] we extended that result to graph with maximum degree 3. We show here that γ(G) ≥ 1− 2 3godd(G)+2 , which leads to γ(G) ≥ 15 17 when considering graphs with odd girth at least ...
متن کاملCircular Chromatic Number of Planar Graphs of Large Odd Girth
It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k + 1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least 4k have circular chromatic number at most 2 + 1 k . Even this restricted version of Jaeger’s conjecture is largely open. The k = 1 case is the well-known Grötzsch 3-colour theorem. This paper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006